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The propagation of small disturbances in hydromagnetics 

By G. S.  S. LUDFORD 
University of Maryland and Harvard University 

(Received 20 August 1958) 

This paper is concerned with the propagation of small initial disturbances in 
a conducting gas under the influence of a uniform external magnetic field. 

For a perfect conductor, there are three types of plane waves, each of which de- 
pends strongly on the angle a t  which the magnetic field is crossed. The modifying 
effects of finite conductivity are determined and, in the case of these waves, this 
is done uniformly for all angles. A general disturbance may be resolved into two 
parts, one of which satisfies afourth-order equation and the other a fifth; for a per- 
fect conductor these reduce to second- and fourth-order equations, respectively. 

The free oscillations of the gas are examined when it is contained in a rectangular 
box, and, in particular, when the external field is very weak or very strong. For 
vanishingly weak fields the idealization of infinite conductivity proves to be 
inadequate. Finally, the initial-value problem is discussed. 

1. Introduction 
In  this paper we consider the small perturbations of an electrically conducting 

inviscid gas a t  rest in the presence of a uniform external magnetic field. The main 
interest lies in fluids of high (but not infinite) conductivity, and in order to obtain 
all effects we do not neglect displacement currents. 

The system of eleven first-order linear differential equations governing the 
motion possesses two integrals (invariants in time) so that the effective order is 
nine. First we discuss plane waves which, in the context of forced oscillations, 
have been previously considered by van de Hulst (1951) and by Bafios (1955), but 
in each case with certain important limitations. The equations are found to divide 
into two sets, one leading to a quartic for the frequency as a function of the wave- 
length and the other to a quintic. Two of the roots of the quartic and one of the 
quintic give pure decay of which the main effect is the reduction of the initial 
electrical field, as measured in the local frame, to zero; this being required in 
a perfect conductor. For such a conductor the remaining two and four roots give 
the three possible modes of propagation of sinusoidal disturbances. One of these 
can be identified as an Alfvkn wave; the other two cannot in general be distin- 
guished except on the basis of velocity.? The damping effect of finite conductivity 
on these waves is determined (uniformly) for all inclinations of the wave front to 
the undisturbed magnetic field. For small inclinations the damping predomi- 
nates in two of the modes and the disturbances decay exponentially. 

Returning to the general perturbation equations, we show that, by suitable 

t These correspond to Friedrichs’s (1957) transverse, fast and slow dist,urbance waves. 
25-2 
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transformation, these also can be split into sets of four and five. Each set leads, on 
elimination of all but any one of the independent variables, to a partial differential 
equation of the same order. These orders reduce to two and four, respectively, for 
a perfect conductor; the second-order equation then being a one-dimensional 
wave equation and the fourth-order equation exhibiting similar strong anisotropy 
in the direction of the external field. 

We next examine a simple boundary-value problem in detail, namely, the 
standing waves in the fluid when it is confined in a rectangular box made of 
perfectly conducting material into which a uniform magnetic field perpendicular 
to two of the faces has been frozen. These waves, which consist of combinations of 
plane waves, are of three types: those corresponding to an infinity of frequencies 
associated with the Alfvhn velocity, and two others distinguished by their 
symmetry properties about the median plane and having separate frequency 
equations. The resulting pair of distributions of frequencies are sketched for the 
two extreme cases of very weak and very strong external fields. In  the former case 
the ordinary acoustic frequencies are obtained in the limit, half from one equation 
and half from the other, while all other frequencies tend to zero. 

The limiting forms of the waves themselves for the two extreme cases are also 
discussed, and here we encounter two interesting phenomena for a vanishingly 
weak external field. First, the last two types of waves become indeterminate if 
the conductivity has been taken infinite, but tend to definite limits for any finite 
conductivity (which may then tend to infinity). Secondly, for all waves the 
tangential component of velocity is zero on the two walls perpendicular to the 
external field, while no such condition need be satisfied in the absence of an 
external field. Such initial discontinuities in the latter case cling to the walls as 
vortex sheets, while in the presence of a (non-parallel) external field they im- 
mediately move away. We conclude that, however large the conductivity of the 
fluid may be, the idealization of its being perfectly conducting is not good in the 
case of sufficiently weak external fields; and that however weak the field, a vortex 
sheet can only remain adjacent to walls which are parallel to the field. 

We conclude with a discussion of the general initial-value problem and the 
determination of Fourier coefficients appropriate to the orthogonal system 
defined by the standing waves. 

2. The equations of motion 
We consider the motion of an electrically conducting inviscid gas in the absence 

of body forces and heat conduction. Further we shall assume that the material 
coefficients ,LL (permeability), E (dielectric constant), and (r (conductivity) are 
constant. Then the equations governing the motion are 

I aH 1 
at (T 

/ L -  = -curlE, - ( J - p , ~ )  = E+,uvxH, 

dv 
dt 

p- = -gradp+p,E+,uJxH, 

dS 1 
g + d i v p v  = 0, pT- = -(J-pev)2. at dt (T 
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Here the temperature T and the specific entropy X are given functions of the 
pressure p and density p, while pe (charge density) and J (current density) are 
related to the electric field E and the magnetic field H by 

pe = sdivE, 
aE 

J = curlH-s-. 
at 

The system (1) consists of eleven first-order equations for E, H, v, p ,  p and we only 
admit solutions for which 

divH = 0, (2) 

this condition being satisfied at all times if it  is satisfied at any one instant since 
aHfat is solenoidal. 

If the deviation from a given uniform state E = 0, H = H,, v = 0, p = p,, 
p = po is small, so that we may neglect squares and products of disturbance 
quantities, the system (1) reduces to 

1 
aH 1 
at a. 

(a)  p- = -curlE, (b )  -J = E+pvxH,,  

av 
at (c)  po - = -gradp+pJ x H,, I 

i (3) 

a,- = 0, at at at 
(d )  -+podivv aP = 0, ( e )  3- 

where H, p, p now denote deviations from H,, p,, po and 

From ( 3 e )  we see that, except for a function independent of t ,  

In  view of the integrals (2) and (4) the effective order of the system (3) is nine. 

3. Plane waves 
These were considered in detail first by van de Hulst (1951) and later by Bafios 

(1955) for the simpler case of forced oscillations. Since neither of their treatments 
is readily adaptable to the present discussion we shall briefly derive the salient 
features here ab initio. In  particular, we shall contrast the case of a good con- 
ductor (CT large) with that of the more familiar poor conductor (a. small). 

Take the x-axis along the direction of propagation and let the x, y-plane 
contain H,: then H, = (H,cos#,H,sin#, 0) where # is the angle at which the 
waves cross the undisturbed magnetic field. With all variable proportional to 
exp i (wt - KX) and the same symbols used for the factors, the equations (3) divide 
into two sets, I and 11, involving? 

I: El, E2, Ha, v3 and 11: Ea, H2, vl, v2, P (andp), (5 )  

t Subscripts 1, 2, 3 denote 2-, y-, z-components consistently throughout this paper. 
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respectively. Thus we find from equations (3b1),f- (3a3), (3b2), and (3c3): 

respectively, where c2 = l/,uc, A: = ,uHi/po, and y = l/pr (magnetic diffusivity). 
Similarly, from (3a2), (34, (3b3), ( 3 4 ,  and ( 3 4  we obtain 

respectively. The remaining equation (3a1) gives Ifl = 0, in agreement with the 
requirement (2). 

The dispersion relations corresponding to these two systems are 

+ A ~ K ~  C O S ~  q5 = 0, 

+ i7/c4a: w + ~ ~ a i  A; coS2 $6 = 0. 

In the first case there are, in general, four possible values of w for each given K, q57 
and in the second case five. The total of nine corresponds to the eleven original 
equations less the two t-integrals (2) and (4). We shall see that two of the roots 
in (i) and one of those in (ii) correspond to pure decays; the remainder (two and 
four) represent damped sinusoidal waves, which are in general neither transverse 
nor longitudinal. 

From (5) we note that E is always perpendicular to both H and v, these being 
parallel vectors in case I. 

4. The extreme cases 
(a) Insulator. For a perfect insulator y = CO, and we find 

I: 0 = + C K ;  E2 = + J(,u/c) H3, El = v3 = 0, 

w = CK; E3 = T J (p /e )  H,, v1 = v2 = p = 0, 

w = + a o K ;  p = + poaovl, 
t ( 3 4 )  is the z-component of equation ( 3 b ) ,  etc. 

E3 = H, = v2 = 0. 
11: { 
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The field H, is purely additive. I and the first of I1 are ordinary (transverse) 
electromagnetic waves and can be added. The second of I1 is an ordinary 
(longitudinal) acoustic wave. 

For a good insulator and all but very small wave numbers (i.e. when the non- 
dimensional quantity ~ K / C  is large) these frequencies become (to order l /q2)  

I: W = & C K + i C 2 / 2 r ] ,  

W = & CK + iC2/27, 

w = 5 a , ~  + iA: sin2 q5/27. 
11: { 

The damping of the electromagnetic waves is independent of the undisturbed 
state and is the same as for a rigid body. On the other hand, the (much slower) 
damping of the acoustic wave does depend on the undisturbed state and in 
particular is zero for $ = 0. In  addition, three other roots now occur, given (to 
order l / ~ ~ )  by? 

w = ialc2/7; 

w = iazc2/7; 
El = [pH, sin $/( 1 - al)] w3 + (p,c2/H, sin $) v3, 
El = [pH, sin q5/( 1 - a2)] w3 + pH,  sin $v3, 

I: { 
11: w = iAg cos2 $/y; w2 predominates, 

where 

The first of I reduces to the familiar charge decay for small H, (or q5). The other 
two are then essentially (much slower) velocity decays. 

(b)  Conductor. For a perfect conductor 9 = 0, and we find 

I: o + 2 ( A ,  cos q5) K ;  E,/pH,sin $ = - E2/pH, cos $ = T (A,/H,) H3 = w3 
("PP'OX.), 

where V = V1), V2) are the positive roots of (approx.) 

A sketch of V1) and V2) as functions of q5 is given in figure 1. I gives so-called 
Alfvh waves which progress along the H,-direction with velocity 5 A ,  and with 
E perpendicular to H, as well as to H. For q5 = 0, I1 represents the same Alfvhn 
waves, now transverse and rotated through 90" about the x-axis, and (longi- 
tudinal) acoustic waves with velocity rt: a,. For other values$ of q5 such a distinc- 
tion has meaning only when 

v4- (.:+A:) vz+agA;Cos2QI = 0. 

A, -g a,: V(1) = a,, V(2) = A,cosQ. (6) 

In  fact for A ,  > a,: V(1) = A,, V(2) = a, cos q5, ( 7 )  

t Of the quantities (5), only those of lowest order are listed here [e.g. in I, H,/v, = O( I/?)) 
and hence H ,  is omitted]. Also A;/c2 will be neglected in comparison with unity whenever 
appropriate (indicated by 'approx.' or ' = '). 

$ For fixed 9 and .\/(a: +A :), the root P(l) has a minimum and the root V(l) a maximum 
when ao= A,  (cf. figure 1). At this point the two waves for $ = O  interchange. 
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the velocities a,, A,, have changed roles, without however a corresponding inter- 
change of the other characteristics of the waves. 

For a good conductor and all but very large wave numbers (i.e. when the 
non-dimensional quantity ~ K / C  is small) the damping is determined (approx.) by: 

w2 - i7/c2w - K ~ A :  cos2 # = 0, 

( 8 )  w4 - i?,W2w3 - (a: + A:) ~~w~ + iylc4a:w + ~ * a t A $  cos2 # = 0, 

respectively. From the first of these we find immediately: 

i K [  k J(4Ai cos2 # - y2K2)  + i y ~ ]  
+iK[TK , / ( q 2 ~ 2 -  4A: cos2 #)] (cos # < y~ /2A, ) .  

(cos # > V K / 2 A , ) ,  I: w = 

min. 
(ao, Ao) 

, 4- 
I I / 

30" 60" 966 
FIGURE 1. The velocities V(l) and V@) as functions of the angle 4 between the 

undisturbed magnetic field and the direction of propagation. 

The second yields the damping of the V(l)-waves as an 7-perturbation. Having 
found this perturbation, we take out the corresponding factor from the left-hand 
side of the equation and are left with 

w2 - i Y K 2 P ( # )  w - V(2)2 = 0, 
V(U2 - A: - V ( 2 ) 2  

where 

as the equation governing the damping of the V2)-waves. Hence we find 

P(#) = 2V(1,2;x-A: = Gxt-29 

w + k V(%c+ QiyK2((1 -P), 

w +  
'I: { &K[ f 4(4V(2)2 - Y 2 K 2 P 2 )  i q K P ]  ( V(2)/F > &jK), t  { & K [ y K P  5 , / (y2~2P2 - 4V(2)2)] ( V2) /P  < + T K ) . ~  

For I and the second of I1 there is a range of values near # = +rr where the damped 
waves turn into pure decays. In  all cases, when # is small the damping factor 
changes rapidly near a, = A,.$ There is no damping of the acoustic wave (# = 0) ,  
and for # = $rr two of the four decays stop. These last results are in fact exact, 
see (i) and (ii). 

these conditions 
become cos $<7~a,/2A,,/(c :+A :). 

t Using the approximation V(z)=aoA, cos q5/ ,/(a: +A:)  near q5 = 

$ At q5 =0,  P jumps discontinuously from 1 to zero. 
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As before, there are three more roots now, given (to order q) by 

w = ic2/q; 

w = ic2(1 +Ai/c2)/q = ic2/r]; 

w = ic2(1 +Ai/cz)/q + ic2/q;  

E&os 4 = E,/sin 4, 
Ellsin$ = -E,/cos$ = - (poc2/H,)v3  

(H,/p,c2) E3 = v,/sin$ = -v2/cos#. 

I: { 
11: 

Together these correspond to (very fast) decays in E and v x H, in which the total 
momentum p0v + (E x H,)/c2 remains constant (zero). We shall return to this 
point later. 

5. Splitting of the general linearized equations 
The division of plane waves into two sets has its counterpart for the general. 

flow governed by equations (3). To show this we introduce new Cartesian co-ordin- 
ates, where now the y-axis lies along H,. Also we denote by 8,6, A the divergences 
of E, H, v using x- and z-components only: 

aE, aE3 aH aH3 av, av 
ax aZ ax az ax aZ * 

8=-+-, &=-l+-, A=-+---” 

Then for E,, 8, curl, H, curl, v the following four equations hold: 

($,+ 1) E,-pr,Jcurl,H = 0, 

+pH,curl,v = 0, 

1 ae a Po a --+p-cur1,H---cur1,v = 0. 
c2 at ay H, at 

The first and fourth of these are the y-components of the curl of (3  a )  and the curl 
of (3  c), respectively; the second is the same component of (3  13) and the third is the 
divergence of that equation. 

Similarly, for curl, E, H,, 8, v,, A, p we find the six equations 

curl,E+p% at = 0, 

( ~ ~ + l ) c u r 1 2 E + p q V 2 H , - , u H o A  = 0, 

av2 aP po- +- = 0, 
at aY 

i a  

%+a = 0. 
a Y  
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Here the first and third equations are the y-components of (3a)  and ( 3 c )  respec- 
tively, and the second is the same component of the curl of ( 3 b ) .  The fourth is the 
divergence of (3 c). The fifth is just (3  d) ,  after (3  e )  has been used, and the six this 
the integrated form of the divergence of (3a )  (see equation (2)). 

Thus each of (3a)-(3d) has given rise to as many equations in (9) and (10) as it 
has components, and the order (nine) of these in the t-derivative is just two less 
than that (eleven) of the original system. 

By eliminating the other three variables from (9), we find that each of u = E,, 
8, curl, H, curl, v satisfies 

note that for 7 = 0 this is a one-dimensional wave equation. Similarly, by eli- 
minating all but one of u = curl, E, H,, 8, v,, A, p from (10) we find 

The two operators reduce to the left-hand sides of equations (i) and (ii), respec- 
tively, on setting a/at = iw, V2 = Play2 = - K, cos2 q5, as they should. For 
7 = 0, the order of the first in the t-derivative reduces from four to two, while that 
of second changes from five to four. The combined loss of three corresponds to the 
fact that (3  b )  reduces to the algebraic relation 

E+,uvxH,, = 0 (12) 
for a perfect conductor, so that E can no longer be initially prescribed indepen- 
dently of v. For small 7 the corresponding relaxation of the initial conditions is 
asymptotically represented by the three modes of decay discussed a t  the end of 
the preceding section.? 

6. Standing waves in a rectangular box 
Suppose the gas fills a rectangular cavity (x = 0, a;  y = 0, b;  z = 0,c)J in 

a perfectly conducting rigid body into which is ‘frozen ’5 a uniform magnetic field; 
let the corresponding external field in the cavity be H,. Since we must allow the 
possibility of surface currents for a perfect conductor, the tangential component 
of H is not necessarily continuous across the walls of the cavity. Thus, whether or 
not the gas is considered to be perfect, the complete set of boundary conditions is 

(13) 1 
E, = E3 = Hl = v1 = 0 

E3 = El = H, = v, = 0 

El = E, = H3 = v3 = 0 

on x = O,a, 

on y = O , b ,  

on z = O , c ,  

t A fuller account has been given by Ludford (1959). 
$ No confusion arises from this second use of c since the old A E/cz will be automatically 

3 For a perfect solid conductor Maxwell’s equations integrate to give E=O and H 
neglected in the remainder of this paper. 

independent of t .  In the present case this has the effect of isolating the oscillating gas. 
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expressing the continuity of the tangential component of E and of the normal 
components of pH and v. 

By virtue of Maxwell's equation (3  a)  the conditions on H are satisfied whenever 
those on E are satisfied. Moreover, for a perfectly conducting gas: E2 = 0,  the 
vanishing of E3 on the x-faces is implied by the vanishing of vl, and similarly for 
El and v3 on the z-faces [see (12)]. Thus for 7 + 0 there are only eighteen effective 
conditions in (13)) of which eight are automatically satisfied by virtue of the other 
ten when 11 = 0. 

Since the modifying effects of non-zero 7 have already been sketched in 5 4 we 
restrict the discussion now to 7 = 0. Separation of variables then leads to the 
following solutions of (9) : 

mn 
H - - H, Fg(x, z )  cos m 
l -  b 

mm 
b 

H3 = - -- Ho Fx(x, z )  cos m 

mi? 
(15) w = - A  ' 

b O '  
where in agreement with (i) 

in addition E2 = H, = v2 = p = 0. In  order to satisfy the boundary conditions on 
v1 and v3, the otherwise arbitrary function F(x, z )  must vanish on x = 0, a and 
z = 0, c; the sin mnylb, with m a non-negative integer, in El and E3 follows for 
a similar reason. Note that Hand v are 90" out of phase, and that we have ensured 
curl, E = 6 = A = 0 [equations (10) must also be satisfied]. 

Similarly, we find product solutions of (10): 

1 7TX 7Tz 
HI = -i- Hog'(y)sinl-cosn-eeiwt, 

oa a C 

7TX nz . 
U C 

Hog(y)cosl-cosn-eeZW~, 

n 7TX 7Tz . 
WC a C 

H3 = - i - Hog'(y) cos 1 - sin n -- eWt, 

v1 = -__ = -g(y)sinE-cosn-eawt, E3 1 7TX 7Tz . 
PHO a U C 

7TX 7TZ 

a C 
f(y)cosl-cosn-eiwt, 

El n 7TX 772 

" p H 0  c a C 
v -- =-g(y)cosl-sinn-ei", 

C 

i?X 
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where at f " + w " f a i g '  = 0, 

and f(0) = f @ )  = g(0) = g(b) = 0, (17') 

by virtue of the boundary conditions (13) on w2 and H,; also E2 s 0. Here I and n 
are non-negative integers and the sin Znxlu, sinnnzlc in vl, v3 follow from the 
boundary conditions, while this time we have to take B = curl, H = curl, v = 0. 
Note that H and p are 90" out of phase with v. 

On setting f and g proportional to eiky in (171, we find that (ii), with T,I = 0, 

K~ = k2 +n2 ($+:), and K ~ C O S ~ ~ ~  = k2, must be satisfied. For each w (to be 

determined), I ,  n, there are four possible k's, say f k(l), & M2), given by the roots of 

2 

(18) 

In  order to satisfy the boundary conditions (17') with a linear combination of the 
four pairs of corresponding functions these roots k(l), k(2) must either satisfy 

in which case (except for an arbitrary constant factor) 

I f = sin +k(2) b sin k(l)(+b - y) - sin Bk(l)b sin k("(4b - y), 

or else 

when 

f = cos+k"b C O S ~ " ( + ~  - y)- cos +k(% C O S ~ ( ~ ' ( $ ~  - y), 

Each of the solutions given above involves surface currents, given by the 
tangential component of H rotated in the face through go", and surface charges, 
measured by the value of the normal component of E. 

7. Distribution of frequencies 
The values of o for the standing waves (14) are given explicitly by (15); they do 

not depend on a,, nor on the form of F. On the other hand, the two sets of values 
of w for the waves (1  6) are determined implicitly by (19) and (20), and depend on 
I ,  n, a,, A,; we shall now determine the nature of these last distributions for the 
two extreme cases of very weak and very strong magnetic fields H,. 
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= @/A, and then (19) and When I = n = 0 equation (18) gives k(l) = w/a,, 

(21 4 
mn- 

(20) together yield 
tan+k(l)b = 0,m; o = - a 

b ” 

tan &‘Pb = co, 0; 
mn- 

w = - A  
b O’ 

where m is a non-negative integer. With these in mind we consider in turn: 
( a )  A,  4 a,. For the frequencies with wb/a, of order A,/a, we find from (18) 

correct to O(Ao/a,). Thus when 1 and n are not both zero, equations (19) and (20) 
reduce to 

46 = _+ K ‘Oth +K. 
A cot 

1 ‘tan tanh 
0 = -06 

b 

Graphs of 6j cot Q6 and 0 tan $6 show that for each I ,  n there is alternately a root of 
one of this last pair of equations in every interval (n-,27~),  (2n-, 377), .. ., and that in 
each interval the roots converge monotonically towards the left end-point as 
K increases. The large roots must be excluded in forming the corresponding w’s 
and to the latter we must add (21 b) which correspond to 1 = n = 0. 

On the other hand, when wb/a, = O(1) we have 

correct to O(1). The right-hand side of (19) is now O(a,/A,) and may be taken 
infinite; similarly, the right-hand side of (20) is effectively zero. Thus either 

(24) 
mn- 

w = -Ao 
b 

tan +k(l)b = co,O; for all I ,  n, 

or else 

The frequencies (24) apply when rn is O(a,/A,) (according to our assumption) and 
give the continuation of (22). The second set (25) is the same as for ordinary 
acoustic waves in the region. 

(b) A ,  9 a,. If wb/a, is O( 1) compared with ”,/A,, we have 

correct to O(a,/A,). Now (19) and (20) become tan@Pb = 0 and tan$k(l)b = m, 
respectively, and so 

(26) 
mn- 

b 
w = -a ,, for all 2,n. 

However, when wb/a, = O(A,/a,) the wave numbers are 
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correct to O( 1) .  As before, but this time to a higher degree of accuracy, we may 
take 

mrr 
b 

tan ik(l)b = 0, co; w = -a, for all I, n, 

In the first of these m must, for consistency, be large, and we obtain the continua- 
tion of (26). 

The most important point to notice is that a, and A, have now changed roles 
[compare the remarks concerning (6) and (7)]. 

8. Limiting forms of the waves 
It is of some interest to sketch the forms of the standing waves for the two 

extreme cases (a )  and (b) discussed in the last section. 
(a )  A, <i a,. The waves (14) give no trouble. From (15) we find w --+ 0 as 

A, + 0 for every m, so that the pairs H,, H3 and vl, v3 become independent oft (we 
factor out H, to avoid all except El and E3 becoming zero) and of each other. This 
is in agreement with the integrals: curl v = const. (in time) and H = const. (in 
time) of equations (3) for v = co and H, = 0. However, we note that in the limit v1 
and v3 still vanish-t on y = 0, b whereas no such boundary conditions are required 
for H, = 0 (ordinary acoustic equations govern v). The corresponding vortex 
sheet which clings to a y-face when H, = 0 propagates as a transverse wave dis- 
continuity [in the sense of Friedrichs (1957)l with velocity k A,, along the 
y-direction when H, + 0, and suffers successive reflexions at y = 0, b. This follows 
immediately from the fact that curl, v satisfies (1 l), which for 7 = 0 is the one- 
dimensional wave equation. 

A similar thing happens in the limit, for the frequencies of order A,, with the 
waves (16). The triples H,, H,, H3 and v,, v,, v3 become independent of t and of each 
other, while El, E3 andp tend to zero, the last ( p  -+ 0) following from the fact that 
f '  + 9 tends to zero like A: [see the first of equations (17)]. Again the vanishing of 
v1 and v3 on the y-faces occurs and is reconciled with ordinary acoustics in a similar 
way. 

More care is required with the frequencies which are of order unity. According 
to (23) these involve values of k(l) which tend to infinity like l/Ao, so thatf  and g 
become indeterminate. The difficulty is due to the order of the limits: T,I -+ 0, 
H, -+ 0 and is resolved by interchanging them. Thus for small 7 + 0 and A, -+ 0, 
the dispersion relation (8) with = ,rr2(12/a2 + nz/c2) + k2 and /c2 cos2 q5 = k2 yields 

in place of (23 ) .  With these, the frequencies in (24) are replaced by 

. m2+ 
w = a- b2 7, 

From (12) and the fact that the tangential component of E must be zero, we see 
t,hat v vanishes at any perfectly conducting rigid wall not parallel to H,. 
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while (25)  are effectively unaltered. The values of w given by (29) decrease with 7 
and can be expected to tend to zero, so as to give the same results as in the last 
paragraph. For the remaining values of w the forms (19') and (20') are still correct 
in the limit 7 -+ 0, and on dividing through by the exponentially large sin k(%, 
and cos k(l)b, respectively, we find the limiting forms 

f =  -sink"(&b-y), -cosk(2)(+b-y), 

except for y = 0, b. Then El, E3, H,, H,, H3 vanish in (16) and v,, v,, v3, p are related 
in the same way as for acoustic waves (sin k(,)b and cos k(,)b are respectively zero). 
Again the limit forms of v1 and v3 do not vanish as the y-faces are approached. 

(b) A,  >> ao. Thesituation hereis more straightforward. In (14) the components 
El, E,dominate for large H,, and a high-frequency electric wave results. Similarly, 
for the frequencies (26), g is O(ao/Ao) and f = O( 1)  so that in (16) v1 and w3 may be 
ignored in comparison with the others. For the higher frequencies (27) the com- 
ponent H, may be dropped as well. In either case the result is a wave for which the 
fluid essentially oscillates in the direction of the undisturbed magnetic field. 
Finally, thefrequencies (28)leadtofunctions f andgwhicharebothO( 1) .  Againthe 
components El and E3 predominate so that a high frequency electric wave results. 

In  particular we note that the pressure fluctuations are still carried by the waves 
with velocity a,. 

9. Orthogonality and the three types of wave 
We conclude with a few remarks concerning the solution of the general initial- 

value problem for the present case. 
It follows from the work of Bernstein, Frieman, Kruskal & Kulsrud (1958) that 

velocity vectors Vcl), v(,) of standing waves with different frequencies are ortho- 
gonal,? i.e. 

[" [ b  c" [vil)viz) + + v ~ ~ ) T I & ~ ) ]  dx dy dz = 0. 
J o  J o  J o  

Thus, assuming that we are dealing with a complete set of functions, we can in 
principle solve any initial-value problem by expanding the (assumed) given values 
of v and &/at a t  t = 0 in (vector) Fourier series, making use of this set. Note that 
the initial value of &/at follows from (3c) when H,, H,, H3 are specified (consis- 
tently) together with p .  

Such an expansion can be broken down into three separate ones, each of which 
has a different interpretation. From the initial values we first form curl, H and 
curl, v and expand them in half-range (0, b) cosine and sine series, respectively, in 
y. The pairs of coefficients (functions of x, z )  then determine separately the pairs 
of arbitrary functions F in the general standing waves formed from (14) : each F is 
determined by a two-dimensional Poisson equation and zero boundary values on 
x = 0, a and z = 0, c. In  this way we find the contribution to the complete solution 
arising from the frequencies (15). 

Next we note that the functions f and g in (19') are odd and even, respectively. 

t This is approximate. In the exact relation the first and last terms in the integrand 
are multiplied by ( 1  +A:/ca), where c has its original meaning. 



400 G. 8. S.  Ludford 

about y = +b, that the reverse is true for the functions (2O’), and that H,, v2, A, 
splay as given by (16) have factors g and f alternately (from the first of equations 
(17) the factor f I‘ + g‘ in ap/ay is a multiple off). Moreover, H2 is in phase (or 180” 
out of phase) with p and both are 90” out of phase with v, and A, so that initial 
values of H ,  and p correspond to one of the coefficients in the general standing 
wave formed from (16) and initial values of v2 and A correspond to the other. 

The procedure is now clear. We form v2 and A from the given initial values and 
take their odd and even parts (about y = 4 b) ,  respectively. The resulting func- 
tions are then expanded in half-range (0, a ;  0, c) cosine series in z and z, the coeffi- 
cients being functions of y. Each pair of coefficients w,(y; I ,  n) and A(y; I ,  n)  
must now be expanded in series whose general terms are of the form af(y), ag(y) 
with f and g given by (19’). The value of a is obtained by multiplying the first 
series by n2(Z2/a2 + n2/c2)f(y) and the second by g(y), adding, and integrating from 

This follows from the orthogonality relation (30), which for velocity vectors 
corresponding to pairs of functions f(l), g(1) and f(,), 9’2) with the same 1, n reduces 
to t  

The value of a determines one of the coefficients mentioned a t  the end of the last 
paragraph and the other follows from a similar analysis of the even part of H2 and 
the odd part of ap/ay. 

In  this way we determine the contribution arising from the frequencies satis- 
fying (19). The remaining part of the solution, corresponding to the frequencies 
satisfying (20), is obtained from the even parts of v,, ap/ay and the odd parts of 
H,, A using now (20’) for f and g. 
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